
Sample interactions with a

dependent type checker used as

a theorem prover

Randall Holmes

10/24/2017

1



In this talk I’m going to discuss a logical frame-

work (called Lestrade) implemented by a piece

of software called the Lestrade Type Inspec-

tor (if I may be forgiven for exploiting literary

associations of my name).

The framework Lestrade is a dependent type

theory. Rather than explain discursively what

this is (though there will be some discursive

explanation) we will attempt to exhibit what

it means by showing interactions with the sys-

tem.

2



Things we talk about in Lestrade we call enti-

ties when we are being completely nonspecific.

Entities are divided into two species, objects

and functions.

The species are further divided into sorts. We

say sorts rather than types because the word

“type” is reserved for specific sorts, as we will

see shortly, but we may slip up.

3



There are five varieties of object sort.

There is a sort prop inhabited by propositions
(yes, statements).

For each proposition p of sort prop, there is a
sort (that p) inhabited by evidence for p (one
might say, “proofs of p”, but we are deliber-
ately vaguer about this).

There is a sort obj inhabited by generic mathe-
matical objects. In an implementation of ZFC,
the sets would be of sort obj (presence of this
sort supports “type-free” reasoning though an
implementation of ZFC under Lestrade would
not be type-free, as the proofs/evidence for
propositions would be sorted as usual).

There is a sort type inhabited by “type labels”
and for each type label τ an associated sort (in
τ) inhabited by objects of type τ . For example,
there might be a type label Nat and an object
2 of sort in Nat.

4



Function sorts are more complicated, and this

is always the point in an exposition of Lestrade

where something horrible and indigestible ap-

pears – along with a suggestion from me that

one can pass over this quickly and refer back

to it in the course of reading later examples

which are kinder and gentler.

A Lestrade function f takes a fixed finite list

of arguments x1, . . . , xn, with each xi being of

an object or function type τi and any value

f(x1, . . . , xn) being of an object sort τ (notice

that all outputs of functions are objects). That

much doesn’t sound evil, but wait. Each τi
may depend on any or all xj’s with j < i, and

τ may depend on any or all of the xi’s.

Our notation for the type of f above (in which

the xi’s are bound variables) is

[(x1 : τ1), . . . , (xn : τn)⇒ (−, τ)].

5



We give an extended example of dependent

typing which may also hint at other wickedness

we are up to.

We consider a universally quantified statement

(∀x ∈ τ : φ(x)) and set out to determine the

sort of the universal quantifier ∀. We begin

with x, which is apparently of type τ . Back-

track a little: τ is of sort type and x is of sort

in τ . Now φ(x) is a proposition, so φ is a

function from in τ to prop. So ∀ is a function

which takes a first argument τ (a domain of

quantification) and a second argument which

is a function from (in τ) to prop (note the de-

pendence of its sort on the sort of the first

argument) and returns a proposition (of sort

prop).

We make these declarations under Lestrade.

6



declare tau type

>> tau: type {move 1}

declare x in tau

>> x: in tau {move 1}

open

declare x1 in tau

>> x1: in tau {move 2}

postulate phi x1 prop

>> phi: [(x1_1:in tau) => (---:prop)]
>> {move 1}

close

postulate Forall tau phi prop

>> Forall: [(tau_1:type),(phi_1:[(x1_2:in tau_1)
>> => (---:prop)])
>> => (---:prop)]
>> {move 0}

7



On the preceding slide, I wrote the declare and

postulate lines, and the Lestrade Type Inspec-

tor wrote the replies (I can run a LaTeX file

as a Lestrade script, and the Inspector will en-

gage in proper dialogue when presented with

Lestrade commands and echo the LaTeX con-

text back into the file: it is cute!)

There is quite a lot going on on the slide;

for the moment, notice the dependent type of

Forall.

We perpetrate further horrors on the next slide.

8



open

declare x1 in tau

>> x1: in tau {move 2}

postulate univev x1 that phi x1

>> univev: [(x1_1:in tau) => (---:that
>> phi(x1_1))]
>> {move 1}

close

postulate Ug tau phi, univev that Forall tau phi

>> Ug: [(tau_1:type),(phi_1:[(x1_2:in tau_1)
>> => (---:prop)]),
>> (univev_1:[(x1_3:in tau_1) => (---:that
>> phi_1(x1_3))])
>> => (---:that (tau_1 Forall phi_1))]
>> {move 0}

9



In the previous slide, we present the definition

of the universal generalization rule of logic as

a dependently typed function, which is both a

suitably horrid example of dependent typing,

and something which furthers other parts of

our agenda which are so far implicit.

10



We give a formal description of function sorts
and how to sort a Lestrade term, which, as
foreshadowed, is indigestible and horrible. Let
U [t/v] denote the result of replacing the vari-
able v with t in U .

A function sort is of the form

[(x1 : τ1), . . . , (xn, τn)⇒ (− : τ)],

where each xi is a variable (bound in the term),
the sort of each xi is τi, which may be an ob-
ject or function sort, and τ is an object sort.
Each xi may occur in τj only if i < j. These
notations appear in Lestrade output but not in
user input.

A Lestrade object term is either atomic, in
which case its type can be looked up, or it is
an object term of the form f(t1, . . . , tn), where
each ti is an object or function term, and f is
an atomic function term of sort

[(x1 : τ1), . . . , (xn, τn)⇒ (− : τ)]

11



(notice the agreement in number of arguments).

The sort of t1 must match the sort τ1 (up to

definitional expansion and rewriting): if n = 1

the type of f(t1) is then τ [t1/x1]; otherwise it

is the sort (if any) of f∗(t2, . . . , tn) where f∗ is

postulated with sort

[(x2 : τ2[t1/x1]), . . . , (xn, τn[t1/x1])⇒ (− : τ [t1/x1])].

A Lestrade function term can be atomic, in

which case its sort can be looked up. Function

terms occurring in applied position are always

atomic: if a nonatomic functional term re-

places a variable in applied position, the nonatomic

term is eliminated by definitional expansion as

part of the substitution process.

It can be “curried”: if f is an arity n function

and m < n, f(t1, . . . , tm) denotes

[xm+1 . . . , xn ⇒ f(t1, . . . , tm, xm+1, . . . , xn)].



Such terms occur only as arguments.

It can be an anonymous function term with

variable binding: [x1, . . . , xn ⇒ T ], which we

will explain when we have discussed the Lestrade

declaration context and definitions. Such terms

occur only as arguments.



An object sort term is of one of the forms prop,

type, obj, that p where p is an object term of

sort prop, or in τ where τ is an object term of

sort type.

A function sort term can be of the form

[x1, . . . , xn ⇒ τ ],

representing the sort

[(x1 : τ∗1), . . . , (xn : τ∗n)⇒ τ∗],

where τi is the sort of xi (which is a variable

in the local environment), τ∗ is the result of

replacing each xi with x∗i in τ , and each τ∗i is

the result of replacing xj with x∗j for each j < i

in τi.

12



The Lestrade declaration environment is de-

signed to support the definition of atomic func-

tion identifiers in the parameterized style

f(x1, . . . , xn) = T,

where the xi’s are variable parameters and T is

an object term.

The declaration environment contains identi-

fiers with associated sort and definition infor-

mation. The set of declarations is partitioned

into moves indexed by natural numbers: the

moves at any particular point are indexed by

0,1, . . . , i, i+ 1, where i is a parameter. There

are always at least two moves. Move i is called

the “last move” and move i + 1 is called the

“next move”.

13



The underlying idea behind the moves is that

entities in any move are variable relative to en-

tities at all previous moves. Entities declared

at move 0 are things to which the user is com-

mitted. When i has a value higher than 0, we

have temporarily fixed all objects declared at

moves 1 to i and are varying those declared

at move i + 1. The way we use the variables

declared at move i+ 1 is as parameters in dec-

larations or definitions of new identifiers to be

declared at move i.

Relativity of variables is not unusual in ordinary

mathematics: a term ax+ by in a calculus text

probably has x, y in effect at move 2 and a, b

at move 1.

14



Here are Lestrade commands which make global

changes to the declaration environment.

The open command increments i, creates a

new empty next move, and causes the former

next move to become the last move.

The close command does nothing if i = 0; if

I is positive it decrements i and discards all

declarations at the last move. The former last

move becomes the next move.

The clearcurrent command clears all declara-

tions in the next move without modifying i:

this is needed as an independent command to

be able to clear declarations at move 1.

15



A variable is precisely an identifier which is de-

clared but not defined in the next move.

Declarations in each move are sorted in the

order of declaration. The argument list to any

declaration command must have its variables in

the order in which they were declared (this is a

cheap way to enforce dependency restrictions).

The declare command, whose operands are a

fresh identifier and a sort term, declares a new

variable (in the next move, of course) with the

given sort.

16



declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

17



The postulate command, whose operands are

a fresh identifier f , an argument list x1, . . . , xn,

and an object sort τ , declares the new identifier

f as a function with sort

[(x1 : τ1), . . . , (xn : τn)⇒ (− : τ)],

where each τi is the type recorded for the vari-

able xi. The declaration of f is recorded at the

last move. If the argument list is null, f is de-

clared as an object of type τ at the last move.

This is how to declare axioms and primitive

notions under Lestrade. In any instance of the

postulate command, any variable on which the

sort of any argument depends or on which the

object sort operand depends must appear in

the argument list.

18



postulate ?? prop

>> ??: prop {move 0}

postulate & p q prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

postulate -> p q prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

19



The define command, whose operands are a

fresh identifier f , an argument list x1, . . . , xn,

and an object term T , in effect defines the new

identifier as the function satisfying f(x1, . . . , xn) =

T . The sort information recorded for f (at the

last move) is

[(x1 : τ1), . . . , (xn : τn)⇒ (T : τ)] :

the actual sort of f is obtained by replacing

T with −, but this is a convenient way to

store the definition body. The system also

uses [(x1 : τ1), . . . , (xn : τn) ⇒ (T : τ)] as an

anonymous internal notation for f .

20



define ~ p : p -> ??

>> ~: [(p_1:prop) => ((p_1 -> ??):prop)]

>> {move 0}

define <-> p q : (p -> q) & (q -> p)

>> <->: [(p_1:prop),(q_1:prop) => (((p_1 ->

>> q_1) & (q_1 -> p_1)):prop)]

>> {move 0}

21



We describe the computation of the term

f(t1, . . . , tn).

It will only compute if it sorts successfully. If

n = 1 the value is T [t1/x1]; otherwise the value

is the value computed for f∗(t2, . . . , tn) where

f∗ is postulated with internal notation

[(x2 : τ2[t1/x1]), . . . , (xn : τn[t1/x1])

⇒ (T [t1/x1] : τ [t1/x1])].

If the argument list is null, f is defined as syn-

onymous with T . In any instance of the define

command, any variable on which the sort of

any argument depends or on which the object

term operand or its sort depends must appear

in the argument list.

22



We can report that a term [x1, . . . , xn ⇒ T ] will

refer to the function f with internal informa-

tion

[(x∗1 : τ∗1), . . . , (x∗n : τ∗n)⇒ (T ∗ : τ∗)] :

as in user-entered function sort terms, starring

signals that x∗i replaces xi in T , in τ , and in

τj for j > i. Note that bound variables in ei-

ther function or function sort terms must be

variables declared at the next move.

It is an interesting point that the original im-

plementation of Lestrade did not allow user-

entered terms with bound variables at all, and

that, though it could be a bit long winded, all

applications of such terms can be implemented

with parameterized declarations and definitions

of atomic function terms.

23



A very important note is that defined identi-

fiers at the next move must be eliminated from

sort information saved to the last move due

to a postulate or define command, by defini-

tional expansion where possible, or by replace-

ment with the anonymous function term form

in the case of functions in argument position.

The reason for this is that if the next move

were closed, the reference of any such identi-

fiers would be lost.

Some examples of this process can be seen in

the displays in the last proof at the end of

these slides: as more moves are closed toward

the end of the proof, more concepts defined in

those moves are expanded out.

24



We continue with a little development of logic.

We have already declared a selection of propo-

sitional connectives. We will declare rules of

inference for these connectives as dependently

typed functions and carry out a baby proof or

two.

25



declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

declare pq that p & q

>> pq: that (p & q) {move 1}

postulate Conjunction pp qq that p & q

>> Conjunction: [(.p_1:prop),(pp_1:that .p_1),
>> (.q_1:prop),(qq_1:that .q_1) => (---:
>> that (.p_1 & .q_1))]
>> {move 0}

postulate Simplification1 pq that p

>> Simplification1: [(.p_1:prop),(.q_1:prop),
>> (pq_1:that (.p_1 & .q_1)) => (---:that
>> .p_1)]
>> {move 0}

postulate Simplification2 pq that q

>> Simplification2: [(.p_1:prop),(.q_1:prop),
>> (pq_1:that (.p_1 & .q_1)) => (---:that
>> .q_1)]

26



>> {move 0}

define Conjcomm pq : \
Conjunction(Simplification2 pq, Simplification1 pq)

>> Conjcomm: [(.p_1:prop),(.q_1:prop),(pq_1:
>> that (.p_1 & .q_1)) => ((Simplification2(pq_1)
>> Conjunction Simplification1(pq_1)):that
>> (.q_1 & .p_1))]
>> {move 0}



We present the primitive rules for conjunction,

and define a rule of inference Conjcomm.

We note without having time to comment at

too much length on a practical feature of Lestrade.

Officially the function Conjunction must have

four arguments, p, q, pp, qq and if you look at

its sort information, it does.

However, the need for the arguments p and q

can be deduced from the explicitly given ar-

guments, and the values of p and q can be

deduced from the sorts of arguments supplied

to Conjunction: Lestrade supports “implicit ar-

gument inference”, not requiring the user to

explicitly supply arguments that it can infer.

Next we present rules for implication.

27



clearcurrent

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

declare pp that p

>> pp: that p {move 1}

declare pq that p -> q

>> pq: that (p -> q) {move 1}

postulate Mp pp pq that q

>> Mp: [(.p_1:prop),(pp_1:that .p_1),(.q_1:prop),
>> (pq_1:that (.p_1 -> .q_1)) => (---:that
>> .q_1)]
>> {move 0}

28



declare ded [pp => that q]

>> ded: [(pp_1:that p) => (---:that q)]
>> {move 1}

postulate Deduction ded that p->q

>> Deduction: [(.p_1:prop),(.q_1:prop),(ded_1:
>> [(pp_2:that .p_1) => (---:that .q_1)])
>> => (---:that (.p_1 -> .q_1))]
>> {move 0}

29



Modus ponens and the deduction theorem should

be recognizable.

The declaration of ded with an explicit function

sort is slick: a little open/close block could also

do it.

We present a quick proof motivated by Conjcomm.

30



declare pandq that p & q

>> pandq: that (p & q) {move 1}

define Conjcomm2 p q : Deduction [pandq => Conjcomm pandq]

>> Conjcomm2: [(p_1:prop),(q_1:prop) => (Deduction([(pandq_2:
>> that (p_1 & q_1)) => (Conjcomm(pandq_2):
>> that (q_1 & p_1))])
>> :that ((p_1 & q_1) -> (q_1 & p_1)))]
>> {move 0}

31



Note the use of [pandq => Conjcomm pandq] as

an argument. It’s worth noting that this is

not the same function as Conjcomm: the latter

function has two additional implicit arguments.

It would be possible to introduce the function

[pandq => Conjcomm pandq] using an open/close

block, but the use of an anonymous function

term is more efficient.

We present an extended proof of a theorem of

propositional logic.



clearcurrent

declare A prop

>> A: prop {move 1}

declare B prop

>> B: prop {move 1}

declare C prop

>> C: prop {move 1}

% prove ((A -> B) & (B -> C)) -> (A -> C)

open

declare hyp1 that (A -> B) & (B -> C)

>> hyp1: that ((A -> B) & (B -> C)) {move
>> 2}

define line1 hyp1 : Simplification1 hyp1

>> line1: [(hyp1_1:that ((A -> B) & (B
>> -> C))) => (Simplification1(hyp1_1):
>> that (A -> B))]
>> {move 1}

define line2 hyp1 : Simplification2 hyp1

32



>> line2: [(hyp1_1:that ((A -> B) & (B
>> -> C))) => (Simplification2(hyp1_1):
>> that (B -> C))]
>> {move 1}

% now suppose A to prove A -> C

open

declare hyp2 that A

>> hyp2: that A {move 3}

define line3 hyp2 : Mp hyp2 (line1 hyp1)

>> line3: [(hyp2_1:that A) => ((hyp2_1
>> Mp line1(hyp1)):that B)]
>> {move 2}

define line4 hyp2 : Mp (line3 hyp2, line2 hyp1)

>> line4: [(hyp2_1:that A) => ((line3(hyp2_1)
>> Mp line2(hyp1)):that C)]
>> {move 2}

close

define line5 hyp1 : Deduction line4

>> line5: [(hyp1_1:that ((A -> B) & (B
>> -> C))) => (Deduction([(hyp2_2:



>> that A) => (((hyp2_2 Mp line1(hyp1_1))
>> Mp line2(hyp1_1)):that C)])
>> :that (A -> C))]
>> {move 1}

close

define Transimp A B C : Deduction line5

>> Transimp: [(A_1:prop),(B_1:prop),(C_1:prop)
>> => (Deduction([(hyp1_2:that ((A_1 ->
>> B_1) & (B_1 -> C_1))) => (Deduction([(hyp2_3:
>> that A_1) => (((hyp2_3 Mp
>> Simplification1(hyp1_2)) Mp
>> Simplification2(hyp1_2)):that
>> C_1)])
>> :that (A_1 -> C_1))])
>> :that (((A_1 -> B_1) & (B_1 -> C_1))
>> -> (A_1 -> C_1)))]
>> {move 0}



Notice that Lestrade’s move structure supports

a quite standard style of reasoning under nested

hypotheses.

It is also worth noticing the automatic expan-

sion of concepts defined at higher-indexed moves

as moves are closed: recall that a defined func-

tion (or object) declared at the next move

must be eliminated by definitional expansion

from sort information posted to the last move

by a declare or postulate command. Tracking

the appearance of the functions line1 through

line5 in Lestrade output at different move lev-

els will illustrate this.

33


